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Quadrature Formulas for Functions with Poles 
Near the Interval of Integration* 

By Giovanni Monegato 

Abstract. In this paper, we examine the construction of quadrature rules of interpolatory type, 
using only real function values, for functions with complex conjugate pairs of poles near the 
interval of integration. 

1. Introduction. In some recent papers, Elliott and Paget [3], Sloan and Smith 
[14]-[19], and Smith, Sloan and Opie [20], have examined properties of the so-called 
product integration rules of interpolatory type, i.e., quadrature formulas of the form 

(1) f k(x)f(x) dx= E (k)f (xj) 
a i-i 

with 

i,() fa k(x- )P(x) dx, ~( X) = k(xH (P X-x i 
W11j ( 

ak (x - i-iP, 
k X J 

obtained by preassigning a set of n distinct points { x,,j } in (a, b), and determining 
the weights { w~j(k)} by requiring the rule to be exact whenever f(x) is a poly- 
nomial of degree less than n. Integrals of the form (1) arise in many applications, 
particularly in integral equations. 

Although the idea of constructing formulas of this type is very appealing, in 
practice it can be realized only for particular "kernel" functions k(x). Indeed, the 
expressions given in the papers mentioned above for the computation of the weights 
w,,j(k) require knowledge of the so-called modified moments 

(2) mi =f k(x)Pi(x) dx, i = 0,1, . . .. 
a 

where {Pi (x)} denotes a sequence of polynomials (usually orthogonal), and the 
zeros of P,,(x) are precisely the nodes { x,," } of (1). 

In their papers, Sloan and Smith have studied the convergence of product 
integration rules for several choices of the nodes { x,, }, and under mild hypotheses 
on the functions k(x) and f(x). Here we report one of their main results (see [16], 
[18]). 
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THEOREM 1. Let (a, b) = (-1, 1) and Pn(x) be the nth-degree polynomial orthogo- 
nal on (-1, 1) with respect to a nonnegative weight function w(x), with zeros xnl' 

X .. , X. 111, and (i) 

Ik(x) 12dx<oo, 
-1 W(X) 

or (ii), w(x) = u(x)(1 -x)a(1 + x)O, u(x) positive in [-1, 1] and u E Lip[-1, 1], 
and 

f Jk(x)(1 X- x) [(2a+)4'0](1 + X)-max[(2,x+1)/4,]Pd < 

for some real p > 1. 
Or (iii), let xj = cos((2j - 1)7"/2n) or XnJ = cos((j-1),r/(n-1)) or XJ = 

cos((2j - 2) r/(2n - 1)), and 

f1Ik (x) I dx < oo 

for some real p > 1. 
Then, for all bounded Riemann integrable functions f(x) we have 

(3) lim w wn1(k)f(xnj) = j k(x)f(x) dx 
n *o?? j=l1- 

and 

(4) lim E w(xn1) f(xn1) =f |k(x) If(x) dx. 
n X ?? j=1 

In the next two sections, we consider the construction of product integration rules 
of type (1), for functions f(x) with a first-order real pole or a pair of first-order 
complex conjugate poles, i.e., of the form 

(5) f(x) = A ) or f((x) AX) 

with u and -8 + ic outside, but close, to the interval of integration (a, b). To 
simplify the notation we will take 8 = 0 in the following, without any loss of 
generality. Indeed, when 8 # 0, it is sufficient to shift the interval of integration or 
replace ? ic in the expressions we give by -8 + ie. 

Rules for integrals of this type have been proposed in [1, Section 2.12.5.1]. A 
special class of such rules has been explicitly constructed in [11]; however, these 
latter formulas require the evaluation of f(x) at the poles. Since, in our case, the 
complex poles appear in conjugate pairs, we want to construct quadratures that 
incorporate these pairs into the coefficients of the rules and require the evaluation of 
f (x) only at points of the (real) interval of integration. 

Note that integrals of the form 

fbk(x) (f) dx, 

with g(x) = H =1(x - uj)H>((x + 3j)2 + cJ2), can be easily reduced to linear 
combinations of integrals that involve functions of the form (5). 
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In our discussion, we assume that we already have, or know how to compute, the 
product rule (1), and want to construct the new one, 

b n 
(6) | k(x)f(x)dx- E wny(k)f (xnj) 

a j=1 

where 

(7) k(x) = k(+k x or k(x) = 2 

i.e., express the new coefficients {w %(k)} of (6) in terms of the "old" coefficients 
{ WlJ(k)} in (1). 

Formula (6) is precisely of type (1) with the new kernel k(x) defined by (7). 
Hence, the convergence results reported in Theorem 1 apply also to this new 
situation. 

In Section 4, we consider the case of integrals, over infinite intervals, of meromor- 
phic functions with an infinite number of pairs of first-order complex conjugate 
poles, for example, 

o ex ? 1f(x)dx, 

and use suitable formulas of type (6) to construct accurate approximations. We 
remark that the case of a finite interval of integration (and infinitely many poles) is 
similar to that of a finite number of poles, since only those close to the interval will 
affect significantly the accuracy of a quadrature rule, if the latter does not take them 
into account properly. 

2. Computation of the Coefficients wj(k). The case of a single real pole has 
already been treated in connection with the evaluation of Cauchy principal value 
integrals; see, for example, [13]. Indeed, the formulas presented there hold also in 
cases where the pole is outside the interval of integration. Here we recall the formula 
that establishes the connection between the weights of (1) and (6). 

Assume that the nodes { x,,j } are the (real) zeros of a (monic) polynomial P"(x) of 
degree n that satisfies a three-term recurrence relation 

(8) P 
_1(X) 

= 0, PO(x) = 1, 

Pi+1(x) = (x - ai)Pi(x) - biPi-(x), i = 0,1,.... 

Define 

Qi(z) = k (x) Pi dx, i =0,1, .... 

It is not difficult to obtain the relations 

(9) Q1(z) = 0, QO(z) = j (dx, 

Qi+1(z) = (z - ai)Qi(z) - biQi1(z) + Mi, i = 0,1,..., 

where mi are the modified moments in (2). For z E (a, b) we define Qi(z) in the 
Cauchy principal value sense. Note that when {P,(x)} is a system orthogonal in 
(a, b) with respect to k(x) we have mi = 0, i > 1. 
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For the coefficients w,1(k) of the new formula (6), when k(x) = k(x)/(x + u), 
we have (see [13]): 

(10) ~WnA~) =x + g [wnj(k) -,(,i 

x1j + I Q Q,(x () j 1 n 

To obtain the second expression for wj(k), we need to recall that 

w~j(k) = Q(x,,j)1P, (xnj) 

When k(x) = k(x)/(x2 + 62), we can proceed in a similar way and express the 
corresponding new coefficients w~j(k) in terms of the old ones, wj(k). To this end, 
we note first that since 

X2 + iE 

we have 

w,,j(k) p,,(k x) fb|n X() dx 

_ 1 1 Fb k(X) n dx fb k(x) P(x) dx 
2ie p,(x) a X iE X X a X + iE X - X1j ] 

Furthermore, using 

1 _ 1 [1 1] 
(X _iE)(x - Xnj) ie- xn1 X E X X - 

we obtain 

1 r[ \ Qn(ie)(xn + ie) - Qn(-i6)(Xt1- iE) 1 
w1(k) = (x, +2 2)p (X. 

)["n(Xnj) 2ie 

Finally, introducing the real quantities 

7j(e; x) = 1 Qj(k) (X - ie) = (t + x)PJ(t) 

we find 
~2ie Qj(-ie-) 

(x + 
e)t2 + 

6 

2 

dt 

we find 

(11)%AnP)= i 
2 

Wjh(k) P-'(x,)I X2X + e2 [6 Q (x j) 

It remains to determine the quantities T7(6;x,1), preferably using only real arith- 
metic. For this purpose, we introduce the new real quantities 

R,(e; x) = 2[Qj(ie)(x + i6) + Q (-ie)(x - ie)] =f k(t) (tX j2)ej() dt, J~~e; X) = ~~~~ 
iat2 +6e 
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and use relation (9). After some elementary calculation, we obtain 

R-1(e; X) = 7i1(E; X) = 0, 

Ro(e; x) = PO(x xjb tk(t) dt -2jb k(2 dt], 

(12) T0(e; x) = Po(x)[xjb z dt + jb k( )2 dt], 

R1~1(e; X) = -?27j(e; X) - a1R1(e; X) - b1R1_1(?; X) + m}xj=01 

7/1i(E; X) = R1(E; X) - aj(E; X) - b17T1(E; X) + m 

The use of (12) requires knowledge of the modified moments in1, as well as the 
ability to compute the integrals 

(13) jb k~) dt, jb tk(t) dt. 

In special cases, these can be expressed in closed form. Two important cases are 
listed below: 

(i) 
2 Tdt = P[arctg( ?) - arctg( )] 

jb t2+2dt =2 ln2 2 2 2) 

(ii) 

dt = -[Ci(E)sinE - si(E)COS E], 

X (00 _2T _ 

o tx +e2 dt = -Ci()cos - e-si(e )sin e 

where Ci(x) and si(x) denote the cosine and sine integrals, respectively: 

Ci(x) = | cos(t) dt, si(x) = nt 

The computation of w~1(k) by means of (10) and (11) requires, in addition, the 
evaluation of Qc(xae) or of Pbe(x";). The first quantity can be computed using the 
recurrence relationship (9) when it is stable and Qa(xrc) is available. Stability 
appears to be assured, for example, when k(x) is the Jacobi weight function (see [4, 
Section 3.2.3]). Formula (10) requires also the computation of Q"(-u); when u is 
very close to the interval of integration-the situation which we are interested 
in-we have observed acceptable stability of (9) in the case of the Jacobi weight 
function; otherwise, Q"(-u) should be evaluated by the backward recursion pro- 
posed by Gautschi in [6]. 

We expect the stability behavior of the evaluation of - (E; Xn;) in (11) by means 
of (12) to be similar to that of Qn(_ ?iE); for example, in the Jacobi case it appears 
acceptable when E iS sufficiently small. If the forward recursion (12) is not suffi- 
ciently stable, we use the alternative expression 
(14) Tn(E; x co) = Re(Qn(iE)) + Im(Qs(ie))xny/e, 
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and evaluate Q"(ie) with the (stable) backward algorithm suggested in [6]: 

r(v) -0 (v) sb= v, v - 1,...1,0, 
(15) iEasS- 

= -1, f(v) = r(v) f(9), s = 0,1,..., 

where v is a sufficiently large integer (> n) determined by the prescribed relative 
accuracy on the approximation f, () of Qn(iE), and the coefficients a, bs (bo = mio) 
are those of recurrence relation (9). Good estimates of v for classical weight 
functions are given in [6]. 

When (1) is a classical Gaussian rule, from [21, 15.3.1, 15.3.5, 15.3.6] we derive the 
following useful representation for Pn(x): 

pl a,#) '(Xnj) = (-l)j '[d (a,,)]1/2[(1 - X21)wn1(k)] 1/2 (Jacobi), 

dn(a,/3) = 2a`?01 F(n + a + 1)J'(n + /3 + 1) 
F(n + I)J'(n + a + /3+ 1)'I 

L (xnj) = (-1)'[xn1wjX(k)]1"2 (Laguerre), 

H'(x,1) = (_1)j-k7i1/4[2n+?n!/wnj(k)] 1/2 (Hermite), 

where the zeros {fx nj} are arranged in decreasing order in the Jacobi and Hermite 
cases, and in increasing order in the Laguerre case. In the identities above, it is 
assumed that the coefficient kn of xn in Pn('a)(X), Ln(x), Hn(x) is 

kl = 2 ( ) kn = !Akn = 2 

respectively. From the first equation in (11), we then obtain 

w ( -k ) = l 241 wnj (k) +(-I)'[ (1-X2, ) wnj (k)ld 1a 
2 

(16) 
x knTn(-; Xnj)) (Jacobi), 

Wn(k) = +2{ wnj(k) l l n!Ixnjwn(k)]/ 

(17) ni 

X Tn (E; xny)} (Laguerre), 

w,1( k) 1 nj2 {w1(k) + (-1) jT - 1/4 [(2 n/n !) wnj (k) 1/2 

(18) (18) 
~ ~~~~ ~~~~~~ ~~X Tn ( ;Xn ); (Hermite) - 

Note that in the Jacobi case, to avoid the loss of precision caused by the factor 
(1 - x,2)1/2 when x is too close to ?1, it is sufficient to use the expression 
(1- X2)1/2 = sin(arccos(xnj)). 

Remark. When k(x) in (1) is nonnegative and {PJ(x)) is the set of polynomials 
orthogonal on (a, b) with respect to k(x), Gautschi [5] presents an algorithm for 
constructing new Gaussian rules associated with the weight functions k(x) given in 
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(7). The nodes of these new rules, however, depend on the "parameters" u and E; if 
u and E are to assume several values, a procedure of this type appears costly. 

3. Numerical Examples. We have considered the following two integrals: 

I1 =J x2+ 2 dx, A 
= 1., 0.5, 0.1, 0.01, 

0 e-x 
I2 =J r 2 Zdx, ? = 2k, k = -2, -1,0,1,2,3,4. 

0 X2 +C29 

The calculations have been carried out on a VAX/11-780 with 16 digit double-preci- 
sion arithmetic. 

TABLE 1 

ex 
I1=jl ;2 2dx(*) 

= 1. I, = 0.1795521283093888E + 1 
n EGL EG () EGM 
4 6.5E - 4 1.1E - 7 9.7E - 5 
8 5.8E - 7 3.2E - 14 1.1E - 10 

16 4.1E - 13 3.2E - 14 8.8E - 16 
32 6.8E - 16 6.5E - 16 

= 0.5 I1 = 0.4893904674627017E + 1 
n EGL EG(* *) EGM 

4 2.9E - 2 9.1E - 8 5.0E - 4 
8 6.2E - 4 8.8E - 16 2.8E - 9 

16 2.8E - 7 5.0E - 16 5.7E - 16 
32 5.8E - 14 2.5E - 16 3.9E - 16 

= 0.1 I, = 0.3030306133968235E + 2 
n EGL EG EGM 
4 0.59 3.1E - 8 2.4E - 3 
8 0.32 1.2E - 16 6.1E - 8 

16 7.4E - 2 2.1E - 16 
32 3.1E - 3 
64 5.3E - 6 

E = 0.01 I, = 0.3131720562393341E + 3 
n EGL EG EGM 
4 0.96 3.6E - 9 3.5E - 3 
8 0.92 1.6E - 16 1.3E - 7 

16 0.84 2.OE - 16 
32 0.69 
64 0.43 

(*) E(;, , E(;, EGM below indicates the relative accuracy obtained by the respective formula GL,, G,, 
GM,,. 

(**) Gautschi in his paper [5] points out the strong tendency of his procedure to become unstable when 

the poles move away from the interval and suggests a variation of his approach; nevertheless, we have 
used the algorithm presented in [5]. 
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TABLE 2 

e- - dx =-[Ci(e)sin e - si(e)cos e] 

e n EGL EGM 

4 1.3E - 1 5.2E -17 
0.25 8 5.6E - 2 3.1E- 16 

16 1.3E - 2 9.3E - 16 
32 1.8E - 3 1.5E - 16 

4 5.4E - 2 1.5E -16 
0.5 8 1.7E - 2 1.8E -16 

16 2.1E - 3 1.5E- 16 
32 8.OE - 5 6.5E - 16 

4 2.4E - 2 8.9E -17 
1 8 2.2E - 3 4.5E -17 

16 9.2E - 5 2.7E - 16 
32 5.5E - 7 4.7E - 16 

4 1.2E - 3 7.OE -17 
2 8 4.9E - 5 1.7E -17 

16 1.5E - 6 1.2E - 16 
32 1.9E - 9 1.5E - 14 

4 2.1E - 4 7.6E -17 
4 8 6.1E - 7 2.4E -16 

16 1.2E - 9 3.3E - 16 
32 4.2E - 14 3.3E - 12 

4 5.2E - 6 6.1E- 16 
8 8 4.8E - 9 4.OE - 15 

16 1.9E - 14 2.4E - 13 
32 7.1E - 17 1.OE - 10 

4 5.OE - 8 1.4E - 15 
16 8 3.9E - 12 1.2E - 14 

16 9.8E - 17 8.OE - 12 
32 1.8E - 16 6.8E - 8 

Integral I, has been estimated by applying to it a Gauss-Legendre rule (GL'), a 
Gaussian rule associated with k(x) = 1/(x2 + e2) (G), constructed with the algo- 
rithm given in [5], and our formula (6) (GM,) where T1(e; xj) has been computed 
using the forward recurrence relation (12) when e = 0.1, 0.01, and by (14) (together 
with Gautschi's algorithm (15) to compute Q"(ie)) when e - 0.5, 1. Some of the 
results we have obtained are listed in Table 1. 

To approximate integral '2 we have used a Gauss-Laguerre rule (GLJ), and our 
formula (6) (GM,) (which should give the exact value of '2) with the coefficients 
w,11(k) given by (17), where 7"(e; x,1) have been obtained from relation (12). In this 
second case, relation (12) appears to become increasingly unstable as e and n 
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increase; this phenomenon shows up in some approximations reported in Table 2. If 
we evaluate T1(e; x";) by means of (14), with Qn(ie) computed using the backward 
scheme (15), we have full stability and get an approximation to machine accuracy. 
This latter algorithm, however, turns out to be a little more expensive in terms of 
arithmetic operations. 

4. Integrals of Functions with Infinitely Many Poles. Recently, integrals of the 
form 

|O eX f (x) dx, |f a+ (x) dx, J exi- 1!() O ex'4+f(Xd 

were considered by Gautschi and Milovanovic [8]. The kernels of both integrals have 
an infinite number of pairs of first-order complex conjugate poles: + i2m'f, m = 1, 
2, .. ., in the first integral, and ? i(2m - 1)i1, m = 1, 2, . . ., in the second. 

Approximations to integrals of the type above can be constructed using formulas 
of type (6). To show how this can be done, consider, for example, the first integral, 
and rewrite it as follows: 

I(f)=J e-x X f(x) dx. 

Recalling the Mittag-Leffler theorem (see, for example, [10, pp. 655 and 660]), we 
obtain a partial fraction expansion of the function x/(1 - exp(-x)), 

x 1 1' 
l1-e X x - 2 x + 1 + 2x2E x2 +E4i2m2' e- 2 ~~M=1 X2 7M 

where the series converges uniformly on every bounded set not containing any of the 
poles. The function 

N 1 100 

l -e X -2x2 E 22 + 2M2 =--x + 1 + 2x2 2 + 2M2 
e-x~ M=ix +?4'm 2 m=N+1X + 4'Tm 

is analytic on any bounded set not containing the poles ?i2m'r, m N + 1, 
N + 2 .... This suggests that we express I(f ) in the form 

I~f)=fo0e-x lx~ + 8: 2 f (x) dx IM f1 - ~ e- + 
?1= X 2 + 41722 

]1X 2 X 

N 
17M x f x) 

- E 8m ef x dx 
rn =1 o x 2 + 4 g2M2 

and apply the n-point Gauss-Laguerre rule to the first integral, and the respective 
formula of type (6), with the weights wj(k) given by (17), to the second integral. 
Note that one can subtract out one pair of poles at a time, until the influence of the 
remaining ones is sufficiently small; in this case, having already computed 

Io(f) - S Vn)f(x0J) , Vn J - wn1(k) 1 i elX, 
j=1-eXJ 
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one determines successively, for m = 1, 2,. . ., N, 

n 

Inz(f) = EVnf (Xnj), 

(19) 1=1 2 

, v() - xml) 4m2 2 (-1) (X wn1j (k)) nT(2m7T; xnj), 
ni 

where T1(2mw; xnj) is given by (14) and Qn(i2m-r) is computed using (15). 
In Tables 3 and 4 below we list some of the results we have obtained. EGL and 

EGM denote the relative errors obtained respectively by the n-point Gauss-Laguerre 
rule and the corresponding scheme (19). 

All the numerical results presented in Tables 3, 4 have been obtained on a 
VAX/11-780, working with 16 digit double-precision arithmetic. 

We must, however, remark that the procedure we have proposed appears effective 
only when the accuracy of the chosen basic rule (1) is bounded mainly by the 
presence of poles, and not by the too low number of nodes in the formula. Indeed, it 
may happen that the limitation of precision in the approximation obtained with the 

TABLE 3 

J eiX dx=T2/6 

n N EGL EGM 

0 7.8E - 6 
1 4.6E - 7 
2 .E - 8 
3 3.9E - 10 

4 4 3.1E - 10 
5 1.2E - 10 
6 4.8E - 11 
7 2.OE - 11 
8 9.3E - 12 
9 4.6E - 12 

10 2.4E - 12 

0 5.8E - 8 
1 3.E - 11 

8 2 8.OE - 13 
3 4.8E - 15 
4 6.4E - 16 
5 2.2E - 16 

0 1.9E - 11 
16 1 7.6E - 16 

2 1.4E - 16 

32 0 2.2E - 16 
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TABLE 4 

I2 = J0 e X1 dx = (2T)12691/65520 

n N EGL EGM 

0 7.9E-11 
16 1 2.5E- 12 

2 6.OE-14 
3 liE. 15 

32 0 8.9E-16 

chosen quadrature is caused mainly by the low number of nodes, and the removal of 
poles does not produce any improvement. This appears to be the case, e.g., for the 
integral I2 when n = 4, 8 (not shown in Table 4). This phenomenon was also 
observed when in I2 we replaced X10 by polynomials of different type, or the infinite 
interval (0, cc) by a finite one (0, b) and applied quadratures based on Gauss- 
Legendre rules. 
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